

| ESSAI EN BOUCLE FERMEE DU VERIN SEUL | 2  |
|--------------------------------------|----|
| UTILISATION DE LA PLATEFORME         | 4  |
| LA SIMULATION AVEC MATLAB-SIMULINK   | 6  |
| TRACE DE COURBES AVEC PYTHON         | 10 |

### *Conventions dans ce document*

- Indique une action à faire avec la souris ;
- Indique qu'une entrée au clavier est attendue ;
- *Indique qu'une action doit être exécutée sur le système.*

## **Plateforme 6 axes**

# **DOSSIER RESSOURCE**

# **ESSAI EN BOUCLE FERMEE DU VERIN SEUL**

## Initialisation du poste de travail

### Vérification / réalisation du câblage

La mise en œuvre du système se fait en suivant ces différentes étapes.



• Brancher le connecteur DB9 du vérin sur le shield moteur ;

• Brancher l'alimentation fournie **sur le connecteur jack du shield** (et non pas sur le connecteur jack de la carte Arduino Due) ;

• Brancher le câble mini USB fourni sur le connecteur mini USB de la carte Due qui se trouve juste à côté du connecteur jack. Attention il y a 2 ports USB, il faut utiliser le « **Program Port ».** 

#### Mise sous tension des appareils

- 💖 En respectant l'ordre établi ci-après :
  - 1. L'ordinateur ;
  - 2. La carte Arduino Due;
  - 3. L'alimentation.

### Téléversement du programme Arduino :

- Lancer l'IDE Arduino ;
- Choisir la carte « Arduino Due (Program Port) » dans le menu « Outils » ;
- Choisir le bon port série indiqué lors du branchement de l'USB dans le même menu « Outils »;

Vous pouvez vérifier le numéro du port série dans le « gestionnaire de périphérique ».

Ouvrir et téléverser le programme « Asservissement en position du vérin » présent dans c:\Temp\Verin6axes\CommandeVerin\Arduino\;



| Sciences de l'Ingénieur                                                                      | Plateforme 6 axes                                                                |  |  |  |  |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|
| DOSSIER RI                                                                                   | ESSOURCE                                                                         |  |  |  |  |
| Lancement de l'application WIZ :                                                             |                                                                                  |  |  |  |  |
| Lancer le logiciel MyViz                                                                     |                                                                                  |  |  |  |  |
| Cliquer sur la clé en haut de la fenêtre :                                                   | F                                                                                |  |  |  |  |
| Cela permet d'ouvrir le panneau supérieur<br>série de votre ordinateur sur lequel est bra    | du mode "édition" afin de sélectionner le port<br>Inche le système de commande : |  |  |  |  |
| MyViz                                                                                        | SOURCES DE DONNEES                                                               |  |  |  |  |
| - my viz                                                                                     | Nom Dernière mise à jour                                                         |  |  |  |  |
| Se ouvrir                                                                                    | osinfos 07:20:49 🔳 🖸 🛍                                                           |  |  |  |  |
|                                                                                              | AJOUTER                                                                          |  |  |  |  |
| source de données                                                                            |                                                                                  |  |  |  |  |
| SOURCE DE DONNÉES                                                                            |                                                                                  |  |  |  |  |
| Flux de données temps-réel provenant du port                                                 | série.                                                                           |  |  |  |  |
| TYPE Port série                                                                              | ~                                                                                |  |  |  |  |
| NOM                                                                                          |                                                                                  |  |  |  |  |
| PORT COM30 - Arduino                                                                         | LLC (www.arduino.cc)                                                             |  |  |  |  |
|                                                                                              |                                                                                  |  |  |  |  |
| Sélectionner l'identifiant du port correspor<br>et cliquer sur le bouton "Enregistrer" en ba | ndant a la carte Arduino Due (comme ci-dessus)<br>as de la fenêtre :             |  |  |  |  |
| ① Quitter le mode édition en cliquant sur la f                                               | lèche située sous le panneau supérieur :                                         |  |  |  |  |
| <ol> <li>Sauvegarder le tableau de bord modifie en</li> </ol>                                | sélectionnant Fichier $ ightarrow$ Enregistrer :                                 |  |  |  |  |
| Démarrer l'interaction en cliquant sur le bo<br>de bord:                                     | outon "ON / OFF" en haut a gauche du tableau                                     |  |  |  |  |
| OFF                                                                                          |                                                                                  |  |  |  |  |
| Vous pouvez ensuite interagir avec le vérin                                                  | en appliquant une consigne de position.                                          |  |  |  |  |
| Page 3                                                                                       | sur 10                                                                           |  |  |  |  |

### Sciences de l'Ingénieur

# DOSSIER RESSOURCE

# UTILISATION DE LA PLATEFORME

## Initialisation du poste de travail

## Vérification / réalisation du câblage

Si les activités demandées ne nécessitent pas l'utilisation du gyromètre, le câblage doit être celui décrit dans la partie « ESSAI DE L'ASSERVISSEMENT DE POSITION DU VERIN SEUL » de ce document.

Dans le cas où l'utilisation du gyromètre est exigée, les connexions entre les différents appareils du poste de travail doivent être établies de la manière suivante :



## Mise sous tension des appareils

- 🖐 En respectant l'ordre établi ci-après :
  - 1. L'ordinateur ;
  - 2. La plate-forme.

# Réalisation de l'essai

Démarrer l'exécution de l'application « Stewart » sur l'ordinateur.

Réglage des conditions d'essai

- Fichier / Nouveau
- Acquisition /

Exécution de la consigne

Pilotage / Action

Affichage des mesures

Pilotage / Courbes

- $\circ$  Y(x) / Toutes : comme son nom l'indique !
- Paramétrique : Chacun fait son menu pour les abscisses comme pour les ordonnées.



# Plateforme 6 axes

### Sauvegarde des résultats

#### Sauvegarde de l'écran

L'écran sélectionné peut être copié sous forme d'image dans le presse-papier de MS Windows :

Alt + Impr écran

L'action « coller »permet de récupérer cette image sous traitements de texte ou logiciels d'édition d'images.

Remarque : Il est conseillé de relever les points de mesure en affichant les valeurs à l'écran, puisque l'export des résultats n'est pas possible.

# LA SIMULATION AVEC MATLAB-SIMULINK

### Lancement de Simulink :

Lancer le logiciel MATLAB-SIMULINK en double-cliquant sur l'icône MATLAB du bureau.
 Une fois que MATLAB est ouvert, cliquer sur l'icône « Simulink Library » dans la barre de simulink Library » dans la barre de Library

## Création d'un modèle sous la forme de schéma-bloc :

3. Dans la fenêtre « Simulink Library Browser », créer un nouveau modèle en cliquant sur « New Model ».

 Simulink Library Browser

6. Affecter les bonnes valeurs numériques en double-cliquant dans chacun des blocs et en modifiant les paramètres.



#### Plusieurs remarques :

- le bloc Transfert **Fcn** permet définir une fonction de transfert sous la forme d'une fraction rationnelle ;
- le bloc Scope permet de définir une sortie et de l'afficher dans un graphe ;
- le paramètre de Laplace est noté s au lieu de p.

#### Configurer et lancer une simulation :

Si votre schéma-bloc est bien construit, les entrées, les sorties et tout les blocs étant définis, vous pouvez passer à la simulation de votre qui calculera numériquement toutes les valeurs à afficher dans les Scopes.

7. **Ouvrir la configuration** de la simulation temporelle en allant dans la barre transversale du modèle et en ouvrant le Menu « Simulation » puis « Model Configuration Parameters ».

8. Modifier la durée de la simulation dans la fenêtre « Simulation Time ».

9. Pour **modifier le pas de calcul**, choisir l'option « Fixed-Step » de la fenêtre « Solver options » puis indiquer le pas de calcul dans le champ « Fixed-Step Size (fundamental sample time). Valider par OK.

10. Lancer la simulation en cliquant sur l'icône « Run » de la barre transversale du modèle.



11. **Double-cliquer** dans le scope dont vous voulez visualiser le graphe.

Récupérer les valeurs dans un fichier :

12. **Rajouter le bloc « To Workspace »** dans votre schéma et relier la sortie du système à l'entrée de ce bloc.

13. **Paramétrer** le bloc « To Workspace » en choisissant « Structure with time » dans le champ « Save format ».

14. Relancer la simulation en cliquant sur « Run ».

15. **Basculer** sur la fenêtre MATLAB et **double-cliquer** sur la variable « simout » de la fenêtre « Workspace ».

Cette variable contient 2 variables : « time » et « signals ».

16. **Copier les deux colonnes** de valeurs des variables « simout.time » et « simout.signals.values » dans un fichier texte.

#### 17. Sauvegarder le fichier texte.

#### Configurer et lancer une simulation fréquentielle :

Le schéma bloc terminé, vous pouvez demander le tracé de diagrammes de Bode de la fonction de transfert entre deux variables.

1. Par un **clic droit** sur la flèche du schéma bloc relative à la variable de sortie, placer un point « Open-loop Input » (accessible par l'option "Linear Analysis Points").



- 2. Par un **clic droit** sur la flèche du schéma bloc relative à la variable d'entrée, placer un point « Open-loop Output » (accessible par l'option "Linear Analysis Points").
- 3. Demander le diagramme de Bode par l'intermédiaire du menu « Analysis/Control design/Linear analysis ».

### **Plateforme 6 axes**

#### Sciences de l'Ingénieur

### **DOSSIER RESSOURCE**



- 4. Choisir dans les options disponibles l'option Bode.
- Le tracé peut être ajusté (échelles, valeurs limites, etc.) à l'aide du menu "Properties" (accessible par un click droit sur la fenêtre graphique) et dans l'onglet "BODE PLOT 1" (grille, légende, propriétés, etc.).

| Unite      |         |             |           |           | X-L imite   |       |    |       |             |
|------------|---------|-------------|-----------|-----------|-------------|-------|----|-------|-------------|
| Frequency: | auto    | •           | Scale: lo | g scale 🔹 | Auto-Scale: |       |    |       |             |
| Magnitude: | dB      | •           |           |           | Limits:     | 1e+03 | to | 1e+05 |             |
| Phase:     | degrees | •           |           |           | Y-Limits    |       |    |       |             |
| Time:      | auto 🔹  | Auto-Scale: |           |           |             |       |    |       |             |
|            |         |             |           |           | Limits:     | -50   | to | 50    | (Magnitude) |
|            |         |             |           |           |             | -182  | to | 1.8   | (Phase)     |
|            |         |             |           |           |             |       |    |       |             |

6. Le tracé peut être sauvegardé en tant qu'image (« Print to figure »).

## TRACE DE COURBES AVEC PYTHON

Le module **pyplot** de la bibliothèque **matplotlib** permet de tracer rapidement des courbes. Le principe est de placer les valeurs des abscisses et des ordonnées dans 2 listes de même longueur.

Le fichier « *ecart\_reel\_simule\_temporelle.py* », à compléter, permet de superposer deux tracés dans une même figure.

Les deux premières lignes permettent l'importation des deux bibliothèques numpy et matplotlib :

import numpy as np
import matplotlib.pyplot as plt

Il faut créer la liste commune des abscisses et les listes des données des grandeurs que l'on souhaite placer en ordonnée :

```
t = np.array([])  # liste des valeurs du temps en secondes
y1 = np.array([])  # liste des valeurs de y1
y2 = np.array([])  # liste des valeurs de y2
```

Pour superposer les tracés des données points par points, on utilise les commandes suivantes :

plt.plot(t,y1,'g-') # tracé de la courbe y1 en vert plt.plot(t,y2,'r-') # tracé de la courbe y2 en rouge plt.show() # montre la figure des tracés

On peut légender le graphe à l'aide des commandes suivantes :

| <pre>plt.title(`Titre du graphique')</pre> | # titre du graphique                      |
|--------------------------------------------|-------------------------------------------|
| <pre>plt.xlabel('en abscisse')</pre>       | <pre># titre de l'axe des abscisses</pre> |
| plt.ylabel('en ordonnée')                  | # titre de l'axe des ordonnées            |
| plt.grid(True)                             | # mise en place d'une grille              |

Si l'on souhaite créer plusieurs figures de tracé, on peut utiliser les commandes suivantes :

| <pre>fig1 = plt.figure() fig11 = fig1.add_subplot(1,2,1)</pre>                            | <pre># création d'une figure de tracé # permet de créer une l<sup>ère</sup> zone de tracé dans un graphe</pre> |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| <pre>fig11.plot(x,y1) fig12 = fig1.add_subplot(1 ,2 ,2) fig12.plot(x,y2) plt.show()</pre> | # on créé une seconde zone                                                                                     |