# Sciences de l'Ingénieur

### **DOSSIER RESSOURCE**



| ESSAI DE L'ASSERVISSEMENT DE POSITION DU VERIN SEUL | 2 |
|-----------------------------------------------------|---|
| UTILISATION DE LA PLATE-FORME                       | 4 |
| UTILISATION DE MATLAB-SIMULINK                      | 6 |
| TRACE DE COURBES AVEC PYTHON                        | 9 |

### *Conventions dans ce document*

- Indique une action à faire avec la souris ;
- Indique qu'une entrée au clavier est attendue ;
- *Indique qu'une action doit être exécutée sur le système.*



# ESSAI DE L'ASSERVISSEMENT DE POSITION DU VERIN SEUL

# Initialisation du poste de travail

### Vérification / réalisation du câblage

Les connexions entre les différents appareils du poste de travail doivent être établies de la manière suivante :



#### Mise sous tension des appareils

- 💖 En respectant l'ordre établi ci-après :
  - 1. L'ordinateur ;
  - 2. La plate-forme.

## Réalisation de l'essai

Démarrer l'exécution de l'application « Axe » sur l'ordinateur.

| hier Acquisition Biotage Tempo Çstesphys. Alde Langue |                                        |
|-------------------------------------------------------|----------------------------------------|
| Zoom Redess                                           |                                        |
|                                                       |                                        |
|                                                       |                                        |
|                                                       | 48 E-01                                |
|                                                       | 45                                     |
|                                                       | 30                                     |
|                                                       | 36                                     |
|                                                       | 33                                     |
|                                                       | 30                                     |
|                                                       | 27                                     |
|                                                       | 24                                     |
|                                                       | 21                                     |
|                                                       | 18                                     |
|                                                       | 15 -                                   |
|                                                       | 12 -                                   |
|                                                       | 9 -                                    |
|                                                       | 6 -                                    |
|                                                       | 3 -                                    |
|                                                       | 0 5 10 15 20 25 30 35 40 45 50 55 60 6 |
| Dessin du vérin                                       | Signal carré                           |
|                                                       |                                        |

#### Réglage des conditions d'essai

- Fichier / Nouveau
- Acquisition / Carré
  - Régler l'amplitude de l'échelon à la valeur souhaitée.
  - Ajuster la période (durée) de l'échelon, de sorte que le mouvement est le temps de s'effectuer en entier, avant que le robot ne revienne automatiquement en position initiale (attention : le début de l'échelon débutera à mi-période)
  - Choisir la position initiale de la tige du vérin (la longueur du vérin varie entre 345 mm et 485 mm).

| M2 | Le cas échéant, p | lacer les masses sur le plateau situé en bout de tige du vérin. |  |
|----|-------------------|-----------------------------------------------------------------|--|

Exécution de la consigne

Pilotage / Action

#### Affichage des mesures

#### Pilotage / Courbes

- Y(x) / Toutes : comme son nom l'indique !
- Paramétrique : Chacun fait son menu pour les abscisses comme pour les ordonnées.
- Remarque : À l'affichage, les déplacements sont adimensionnalisés avec l'amplitude de la consigne. Par contre, l'affichage des valeurs (à l'aide de l'icône adéquate) est dimensionné.

## Sauvegarde des résultats

Deux choix possibles :

Sauvegarde des mesures dans un fichier de données

Les valeurs mesurées sont enregistrées dans un fichier de format « acq » qu'un éditeur de texte peut lire.

- Trouver le fichier Sansnom.acq dans le répertoire c:\Program Files\EX800\Sansnom.acq ;
- Cliquer droit sur le fichier puis « Ouvrir avec » et choisir le bloc-notes windows ;
- Les grandeurs mesurables sont indiquées pour chaque pas de temps.



L'écran sélectionné peut être copié sous forme d'image dans le presse-papier de MS Windows :

Alt + Impr écran

Ì

L'action « coller »permet de récupérer cette image sous traitements de texte ou logiciels d'édition d'images.



| Définition d'un signal                                     | X                                           |
|------------------------------------------------------------|---------------------------------------------|
| Pilotage si: 345 <lg_v< td=""><td>érin&lt;485</td></lg_v<> | érin<485                                    |
| Signal carré                                               |                                             |
| Période en secondes<br>5.00                                | Nb de cycles                                |
| Amplitude en mm<br>5.00                                    | Nb pts/cycles                               |
| 400 <lg<405<br>Lg initiale vérin<br/>400.00</lg<405<br>    | 0 <prolongement<1< td=""></prolongement<1<> |
| 🗸 ок                                                       | 🗶 Annuler 💡 Aide                            |

# UTILISATION DE LA PLATE-FORME

# Initialisation du poste de travail

# Vérification / réalisation du câblage

Si les activités demandées ne nécessitent pas l'utilisation du gyromètre, le câblage doit être celui décrit dans la partie « ESSAI DE L'ASSERVISSEMENT DE POSITION DU VERIN SEUL » de ce document.

Dans le cas où l'utilisation du gyromètre est exigée, les connexions entre les différents appareils du poste de travail doivent être établies de la manière suivante :



Mise sous tension des appareils

- 🖐 En respectant l'ordre établi ci-après :
  - 1. L'ordinateur ;
  - 2. La plate-forme.

# Réalisation de l'essai

Démarrer l'exécution de l'application « Stewart » sur l'ordinateur.

Réglage des conditions d'essai

- Fichier / Nouveau
- Acquisition /

Exécution de la consigne

Pilotage / Action

Affichage des mesures

Pilotage / Courbes

- Y(x) / Toutes : comme son nom l'indique !
- Paramétrique : Chacun fait son menu pour les abscisses comme pour les ordonnées.



# Sciences de l'Ingénieur

### Sauvegarde des résultats

#### Sauvegarde de l'écran

L'écran sélectionné peut être copié sous forme d'image dans le presse-papier de MS Windows :

Alt + Impr écran

L'action « coller »permet de récupérer cette image sous traitements de texte ou logiciels d'édition d'images.

Remarque : Il est conseillé de relever les points de mesure en affichant les valeurs à l'écran, puisque l'export des résultats n'est pas possible.

# LA SIMULATION AVEC MATLAB-SIMULINK

#### Lancement de Simulink :

Lancer le logiciel MATLAB-SIMULINK en double-cliquant sur l'icône MATLAB du bureau.
 Une fois que MATLAB est ouvert, cliquer sur l'icône « Simulink Library » dans la barre de Simulink Library

## Création d'un modèle sous la forme de schéma-bloc :

| Pour vos modèles, vous utiliserez une<br>bibliothèque de blocs prédéfinie appelée                                                                                                                                            | <ul> <li>← ⇒ Enter search term</li> <li>M → B → B → C</li> <li>Bibliotheque de SI</li> </ul>                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| « Bibliothèque de SI » disponible dans la fenêtre « Simulink Library Browser ».                                                                                                                                              | <ul> <li>Simulink</li> <li>Bibliotheque de SI</li> <li>Communications System Toolbo</li> <li>Computer Vision System Toolbo</li> <li>Outipute Computer Vision System Toolbo</li> </ul>  |
| Cette bibliothèque contient les blocs les plus<br>courants que vous allez rencontrer dans les<br>systèmes.<br>4. <b>Glisser-déplacer</b> dans la fenêtre du modèle<br>les blocs que souhaitez utiliser pour votre<br>modèle. | Control System Toolbox<br>DSP System Toolbox<br>HDL Coder<br>Image Acquisition Toolbox<br>Instrument Control Toolbox<br>Neural Network Toolbox<br>Derivative                           |
|                                                                                                                                                                                                                              | <ul> <li>Simscape</li> <li>Simulink 3D Animation</li> <li>Simulink Coder</li> <li>Simulink Control Design</li> <li>Simulink Extras</li> <li>Simulink Support Package for Ar</li> </ul> |
| 5. Placer les blocs dans la fenêtre du modèle<br>et relier les directement en cliquant sur la<br>sortie d'un bloc puis l'entrée du second bloc à                                                                             | Simulink Support Package for LE<br>Stateflow System Identification Toolbox<br>Recently Used Blocks Integrator                                                                          |
| relier.                                                                                                                                                                                                                      |                                                                                                                                                                                        |

6. Affecter les bonnes valeurs numériques en double-cliquant dans chacun des blocs et en modifiant les paramètres.



Plusieurs remarques :

- le bloc Transfert **Fcn** permet définir une fonction de transfert sous la forme d'une fraction rationnelle ;
- le bloc Scope permet de définir une sortie et de l'afficher dans un graphe ;
- le paramètre de Laplace est noté s au lieu de p.

#### Configurer et lancer une simulation :

Si votre schéma-bloc est bien construit, les entrées, les sorties et tout les blocs étant définis, vous pouvez passer à la simulation de votre qui calculera numériquement toutes les valeurs à afficher dans les Scopes.

7. **Ouvrir la configuration** de la simulation temporelle en allant dans la barre transversale du modèle et en ouvrant le Menu « Simulation » puis « Model Configuration Parameters ».

8. Modifier la durée de la simulation dans la fenêtre « Simulation Time ».

9. Pour **modifier le pas de calcul**, choisir l'option « Fixed-Step » de la fenêtre « Solver options » puis indiquer le pas de calcul dans le champ « Fixed-Step Size (fundamental sample time). Valider par OK.

10. Lancer la simulation en cliquant sur l'icône « Run » de la barre transversale du modèle.



11. **Double-cliquer** dans le scope dont vous voulez visualiser le graphe.

Récupérer les valeurs dans un fichier :

12. **Rajouter le bloc « To Workspace »** dans votre schéma et relier la sortie du système à l'entrée de ce bloc.

13. **Paramétrer** le bloc « To Workspace » en choisissant « Structure with time » dans le champ « Save format ».

14. Relancer la simulation en cliquant sur « Run ».

15. **Basculer** sur la fenêtre MATLAB et **double-cliquer** sur la variable « simout » de la fenêtre « Workspace ».

Cette variable contient 2 variables : « time » et « signals ».

16. **Copier les deux colonnes** de valeurs des variables « simout.time » et « simout.signals.values » dans un fichier texte.

17. Sauvegarder le fichier texte.

# TRACE DE COURBES AVEC PYTHON

Le module **pyplot** de la bibliothèque **matplotlib** permet de tracer rapidement des courbes. Le principe est de placer les valeurs des abscisses et des ordonnées dans 2 listes de même longueur.

Le fichier « *ecart\_reel\_simule\_temporelle.py* », à compléter, permet de superposer deux tracés dans une même figure.

Les deux premières lignes permettent l'importation des deux bibliothèques numpy et matplotlib :

import numpy as np
import matplotlib.pyplot as plt

Il faut créer la liste commune des abscisses et les listes des données des grandeurs que l'on souhaite placer en ordonnée :

```
t = np.array([])  # liste des valeurs du temps en secondes
y1 = np.array([])  # liste des valeurs de y1
y2 = np.array([])  # liste des valeurs de y2
```

Pour superposer les tracés des données points par points, on utilise les commandes suivantes :

plt.plot(t,y1,'g-') # tracé de la courbe y1 en vert plt.plot(t,y2,'r-') # tracé de la courbe y2 en rouge plt.show() # montre la figure des tracés

On peut légender le graphe à l'aide des commandes suivantes :

```
plt.title('Titre du graphique') # titre du graphique
plt.xlabel('en abscisse') # titre de l'axe des abscisses
plt.ylabel('en ordonnée') # titre de l'axe des ordonnées
plt.grid(True) # mise en place d'une grille
```

Si l'on souhaite créer **plusieurs figures** de tracé, on peut utiliser les commandes suivantes :

```
fig1 = plt.figure()  # création d'une figure de tracé
fig11 = fig1.add_subplot(1,2,1)  # permet de créer une l<sup>ère</sup> zone de tracé dans
un graphe
fig11.plot(x,y1)
fig12 = fig1.add_subplot(1,2,2)  # on créé une seconde zone
fig12.plot(x,y2)
plt.show()
```