Cheville Du robot NAO

Dossier Ressource

Dossier ressource

TABLE DES MATIERES:

Ι.	FAIRE FONCTIONNER LE SYSTEME	
		3
í	B. FAIRE UNE CAMPAGNE DE MESURES	4
١١.	RESSOURCES DE SIMULATION NUMERIQUE	5
1	A. SIMULATION DES SYSTEMES LINEAIRES	5
E	B. SIMULATION MECANIQUE	
(C. SIMULATION INFORMATIQUE	
III.	NOTIONS DE COURS	
1	A. CHAINES FONCTIONNELLES - STRUCTURE	
E	B. LES DETECTEURS ET LES CAPTEURS	
(C. LES ACTIONNEURS	
[D. Systemes Lineaires:	
E	E. MECANIQUE:	

I. FAIRE FONCTIONNER LE SYSTEME

A. **REPONSE A UNE SOLLICITATION**

- Mettre sous tension la cheville du robot NAO,
- Débrancher-brancher la connexion USB,
- Lancer le logiciel NAO Ankle Kit une 1^{ère} fois, valider puis quitter,
- Lancer le logiciel NAO Ankle Kit une seconde fois,

- Cliquer sur **Mesures**,
- L'écran Mesures apparaît,

Mesures			
Commande et mesures	Courbes de résultats		
Entrées standa	rd Pilotage interactif	Asservissement réducteur	, _
Entrées Aucune Echelon Rampe Parabole Sinus Courbe - Tangage - Durée (s) 2.00	Paramètres Amplitude (°) 10.0 • Période (s) 0.1 • Début (s) 0.0 • Angle initial (°) 0.0 • • Roulis • Incrément de temps (s) 0.01	Consigne de tangage	PID_ch PID_ch PID_ch PiD_ch
	Mesure 🙀 Import]	Fermer

- Choisir le mode Asservissement réducteur,
- Régler les paramètres Entrées, Amplitude, Durée et laisser l'incrément de temps à 0,01s,
- Régler le PID_ch avec KP=1400, Ki=0, Kd=0,
- Cliquer sur Mesure puis observer le mouvement,

B. FAIRE UNE CAMPAGNE DE MESURES

- Cliquer sur **Import**.
- Cliquer sur l'onglet Courbes de résultats,
- L'écran suivant apparaît,

Mesures							×
Commande et mesures	Courbes de résultats		75				
Roulis		Tangage	× 5	kjouter 🔀 Sup	oprimer		0
Consigne		Consigne	N° Ab 1 Ten	oscisse nps (s)	Ordonnée Angle réduct	eur tangage (deg	rés
Angle réducteur	01	Angle réducteur	2 Ten	nps (s)	Com. tangag	e cheville (degré:	:)
Ecart		Ecart					
Com. moteur		Com. moteur					
Angle moteur		Angle moteur					
Ecart moteur		E cart moteur					
fréq. moteur	22-10	fréq. moteur					
PW/M		PWM	Manur				
Courant	O C	Courant	n°1 ☑ n°6 □	n*2 n*7	n°3 🔽 n°8 🕅	n*4 🕅 n*9 📃	n*5 📃 n*10 📃
			M Tr	acer Z Edite	r 🕜		E Fermer

- Cliquer sur **Ajouter** puis sur les grandeurs de la partie gauche de l'écran que vous souhaitez tracer,
- Cocher la ou les mesures à afficher,
- Cliquer sur **Tracer**,

Seules 10 mesures sont sauvegardées, si vous souhaitez en faire plus, vous devez effacer les mesures à partir de l'écran d'accueil.

II. RESSOURCES DE SIMULATION NUMERIQUE

A. SIMULATION DES SYSTEMES LINEAIRES

1. Logiciel SimApp (notice simplifiée):

Ouvrir le logiciel SimApp:

• Cliquer sur Fichier puis Ouvrir pour ouvrir le fichier "*.sap".

Voici le genre de fichier qui devrait apparaître:

Pour modifier la valeur des coefficients présents dans le schéma-blocs, il suffit de faire un double-clic dans le bloc et de modifier les valeurs:

• Une fois les valeurs changées, cliquer sur OK.

Pour lancer la simulation, cliquer sur dans le menu de gauche

Cheville du robot NAO

2. Logiciel Matlab / Simulink:

Lancement de Simulink:

Lancer le logiciel MATLAB-SIMULINK en double-cliquant sur l'icône MATLAB du bureau.

Une fois que MATLAB est ouvert, cliquer sur l'icône "Simulink Library" dans la barre de navigation.

Création d'un modèle sous la forme de schéma-bloc:

Dans la fenêtre "Simulink Library Browser", créer un nouveau modèle en cliquant sur "New Model".

Pour vos modèles, vous utiliserez une bibliothèque de blocs prédéfinie appelée "Bibliothèque de SI" disponible dans la fenêtre "Simulink Library Browser".

Cette bibliothèque contient les blocs les plus courants que vous allez rencontrer dans les systèmes.

Glisser-déplacer dans la fenêtre du modèle les blocs que souhaitez utiliser pour votre modèle.

Placer les blocs dans la fenêtre du modèle et **relier les** directement en cliquant sur la sortie d'un bloc puis l'entrée du second bloc à relier.

Affecter les bonnes valeurs numériques en double-cliquant dans chacun des blocs et en modifiant les paramètres.

Plusieurs remarques:

- le bloc Transfert "Fcn" permet définir une fonction de transfert sous la forme d'une fraction rationnelle,
- le bloc "Scope" permet de définir une sortie et de l'afficher dans un graphe,
- le paramètre de Laplace est noté "s" au lieu de "p".

> Configurer et lancer une simulation:

Si votre schéma-bloc est bien construit, les entrées, les sorties et tout les blocs étant définis, vous pouvez passer à la simulation de votre qui calculera numériquement toutes les valeurs à afficher dans les Scopes.

Ouvrir la configuration de la simulation temporelle en allant dans la barre transversale du modèle et en ouvrant le Menu "Simulation" puis "Model Configuration Parameters".

Modifier la durée de la simulation dans la fenêtre "Simulation Time".

Pour **modifier le pas de calcul**, choisir l'option "Fixed-Step" de la fenêtre "Solver options" puis indiquer le pas de calcul dans le champ "Fixed-Step Size (fundamental sample time)". Valider par OK.

Lancer la simulation en cliquant sur l'icône "Run" de la barre transversale du modèle.

Double-cliquer dans le scope dont vous voulez visualiser le graphe.

Récupérer les valeurs dans un fichier:

Rajouter le bloc "To Workspace" dans votre schéma et relier la sortie du système à l'entrée de ce bloc.

Paramétrer le bloc "To Workspace" en choisissant "Structure with time" dans le champ "Save format".

Relancer la simulation en cliquant sur "Run".

Basculer sur la fenêtre MATLAB et **double-cliquer** sur la variable "simout" de la fenêtre "Workspace".

Cette variable contient 2 variables : "time" et "signals".

Copier les deux colonnes de valeurs des variables "simout.time" et "simout.signals.values" dans un fichier texte.

Sauvegarder le fichier texte.

Cheville du robot NAO

B. SIMULATION MECANIQUE

1. Solidworks

Le logiciel Solidworks permet de faire de la simulation sur des maquettes numérique virtuelles. Il permet de dessiner des pièces, réaliser, visualiser et représenter des assemblages de pièces.

Un mécanisme est construit en réalisant un assemblage de solides.

Chacun des solides est mis en position par rapport aux autres par des contraintes géométriques ou dimensionnelles.

Pour ouvrir le fichier avec solidworks:

Vous ferez IMPERATIVEMENT une copie totale du dossier contenant la maquette numérique de votre système, copie sur laquelle vous travaillerez.

- Lancer le logiciel Solidworks du bureau;
- Ouvrir le fichier assemblage (*.sldasm) de votre dossier contenant la maquette numérique.
- Remarque: Il est fortement possible que dans votre dossier, il y ait plusieurs fichiers assemblages. Dans ce cas, ouvrez le fichier se terminant par "meca3D_eleve".
 - *Pour cacher une pièce:*

cliquer droit sur la pièce que vous souhaitez cacher dans l'arbre de construction, et sélectionner "Cacher les composants".

La manipulation est la même pour faire afficher la pièce à nouveau.

2. Méca 3D

MECA3D est un logiciel de simulation mécanique à partir d'une maquette numérique au format SOLIDWORKS. Il permet de modéliser un mécanisme de solides et réaliser des études:

- cinématiques: déterminer des lois entrées sorties,
- statiques: déterminer des efforts à l'équilibre,
- dynamique: déterminer les efforts en fonction des mouvements imposés.
- ➢ Introduction: MECA3D dans SOLIDWORKS

Ouvrir votre maquette numérique:

• Fichier > Ouvrir > "*.sdlsm"

A gauche dans l'arbre de construction, vous voyez apparaître l'onglet MECA3D.

Si ce n'est pas le cas:

• Option > Compléments > Cocher la case MECA3D

Vous pouvez déjà vérifier si vous avez toutes les pièces du mécanisme.

Il manque des liaisons à modéliser afin de pouvoir simuler le fonctionnement du mécanisme.

Dans l'arbre de construction de gauche, vous visualisez l'étude mécanique en cours avec:

- les solides constituants le mécanisme,
- les **liaisons** entre les solides ou groupe de solides,
- la fonction "Analyse",
- les résultats (simulation et courbes des études menées).
- ➢ Ajouter une liaison

Pour ajouter une liaison:

• Clic droit sur Liaisons > Ajouter

\sim	
👒 🖀 🙀 🧇 🔵	
🖃 📲 Etude 04/11/2209 11:26:07	
- 🥢 Mécanisme	
- 😽 Pièces	
Carter_assemblé<1>	
Re roue axe<1>	
	2
Wis_assemblee<1>	
Compléments SolidWorks	
Complements Solid WORKS	
Autotrace	
Autotrace CoSMOSFloWorks 2008	
Autotrace CoSMOSFIoWorks 2008 SolidWorks 20 Emulator SolidWorks 20 Emulator	
Autotrace COSMOSFloWorks 2008 SolidWorks 20 Emulator SolidWorks 30 Meeting SolidWorks 30 Meeting	
Autotrace CoSMOSFloWorks 2008 SolidWorks 20 Emulator SolidWorks 30 Meeting SolidWorks MTS SolidWorks XTS	
Autotrace COSMOSFloWorks 2008 SolidWorks 20 Emulator SolidWorks 30 Meeting SolidWorks 30 Meeting SolidWorks MTS SolidWorks XPS Driver Autotrace complements	
Autotrace COSMOSFloWorks 2008 SolidWorks 20 Emulator SolidWorks 30 Meeting SolidWorks 30 Meeting SolidWorks MTS SolidWorks MTS SolidWorks XPS Driver Autres compléments Meca3d v8.0	
Autotrace COSMOSFloWorks 2008 SolidWorks 20 Emulator SolidWorks 20 Emulator SolidWorks 30 Meeting SolidWorks 30 Meeting SolidWorks XPS Driver Autres compléments Meca3d v8.0 V	
Autotrace COSMOSFIeWorks 2008 SolidWorks 20 Emulator SolidWorks 20 Emulator SolidWorks 30 Meeting SolidWorks MTS SolidWorks XPS Driver Autres compléments Meca3d v8.0	
Autotrace COSMOSFloWorks 2008 SolidWorks 20 Emulator SolidWorks 20 Emulator SolidWorks 30 Meeting SolidWorks MTS SolidWorks XP5 Driver Autres compléments Meca3d v8.0 OK Annuler	
Complements SolidWorks Autorace COSMOSFloWorks 2008 SolidWorks 20 Emulator SolidWorks 20 Emulator SolidWorks 30 Meeting SolidWorks XPS Driver Autres compléments Meca3d v8.0 OK Annuler	
Complements Jointrofits Autotrace COSMOSFloWorks 2008 SolidWorks 20 Emulator SolidWorks 20 Emulator SolidWorks 30 Meeting SolidWorks XPS Driver Autres compléments Meca3d v8.0 CK Annuler Etude 04/11/2009 11:26:07	

Choisir une liaison

- Sélectionner la liaison choisie,
- Cliquer sur suivant.

Nommer la liaison en indiquant le type de liaison ainsi que les deux pièces en contact.

Définir les deux pièces en contact;

- Cliquant sur les deux pièces dans la maquette,
- Ou en cliquant sur les deux pièces dans l'arbre de construction de l'étude à gauche.

	Sélection des pièces
Nor En	n : PIV roue_axe/carter htre les pièces roue_axe<1> Carter_assemblé<1>
	< <u>Précédent</u> <u>Suivant</u> > Annuler Aide

Cliquer sur suivant. Sélectionner "Par objets".

- Sélectionner le premier objet puis avec CTRL enfoncée, sélectionner l'autre objet,
- Les deux objets apparaissent et deux drapeaux verts s'affichent à gauche si la liaison est bien définie.

O Par contraintes	A Face & Face &	1@Carter_assemblé 2@roue_axe-1/axe	\triangleright
Par objets Saisle au clavier			
Base idéale	_		
0: 0	0	3.500000	
X: 0	0	1.000000	
Y: -1.000000	0	0	
Z: 0	-1.000000	0	

Cliquer sur Terminer puis Annuler.

La nouvelle liaison apparaît dans l'arbre de construction de gauche.

Analyse mécanique

Graphe de structure:

Pour obtenir le graphe de liaison du mécanisme, il suffit d'effectuer un clic droit sur "Analyse" puis "Graphe de structure".

Calcul mécanique:

Pour lancer le calcul:

• Clic droit sur "Analyse" > Calcul mécanique.

Analyse cinématique:	Analyse statique:
Le graphe de structure du mécanisme présente 2 cycle(s) indépendant(s): Le système cinématique comporte: 12 équation(s) et 12 inconnue(s) cinématique(s).	Le mécanisme comprend 5 pièce(s) (bâti non compris). Le système statique comporte: 30 équation(s) et 30 inconnue(s) de liaison(s) et 0 inconnue(s) de effort(s) extérieur(s). L'étude des efforts est possible
En résumé: Le mécanisme est hyperstatique de degré 2 et possède un degré de mobilité égal à : 2	
et possede un degre de mobilité égal a : 2	< Précédent Suivant > Annuler 4

MECA3D vous donne le degré d'hyperstaticité et le degré de mobilité du mécanisme.

Cliquer sur suivant. Dans l'écran suivant, vous devez définir les liaisons pilotées pour mettre en mouvement le mécanisme et obtenir les lois entrée-sortie. MECA3D appelle cela un scénario.

_	-		Choix d	es paramètre	es de calcul		-	
Scénar	in 1	1						
No	o.	Liaison	Composante	Type Mvt.	Vitesse	Courbe		
1		📑 PIV vis bâti	Rx(0.000	Uniforme	1800.000000			
2	2	PG piston bâti	Rx(-1.000	Uniforme	0.000000			
Mouvements d'entrée Commentaires : Type d'étude: Etude cinématique Nbre de positions: 100 Durée du mouvement (sec): 1.000000								
				< Préce	édent Calcu	I Annuler A	\ide	

Ici le degré de mobilité cinématique étant de 2, il faut piloter 2 liaisons pour définir la position de tous les solides à chaque instant. Vous devez définir:

- le degré de liberté piloté « Composante » (Rotation ou translation),
- le type de mouvement (Uniforme, Position variable ou vitesse variable),

- la vitesse du mouvement considéré en tr/min ou m/s,
- le type d'étude (cinématique, statique, dynamique),
- le nombre de positions à calculer (100 c'est bien),
- la **durée du mouvement** total en seconde.

Cliquer ensuite sur calcul. Lorsque le calcul est achevé, cliquer sur Fin.

Résultats du modèle

Simulation:

Pour lancer la simulation:

 Clic droit sur "Résultats" > Simulation

Pour simuler le fonctionnement cliquer sur Play, le mécanisme s'anime.

Courbes:

Pour ajouter une courbe:

- Clic droit sur "Courbes" > Ajouter > Simple
- Cliquer sur l'onglet "Liaisons"
- Choisir la liaison en cliquant sur la liaison dans l'arbre de construction de gauche.
- Choisir de visualiser:
 - la position
 - o ou la vitesse
 - la composante en rotation ou en translation
- Cliquer sur Ajout.

Pièces Li	aisons	fforts				
Liaison:	PG	piston ba	ŝti			
Type c Po Vit Ac O Ce	e résultat ittion) esse :élération ntre					
Composan ③ Rotatio 〇 Transla	es 1 tion	×	٧	₽Z	Norm	ie
		: Garo	H_3000	nbiésti		
	1					

Pour visualiser la courbe:

• Clic droit sur Courbe 1 > Afficher

Pour exploiter la courbe dans excel, il suffit de:

• Clic droit dans le tableau de points de gauche > Créer un rapport

Choisir le répertoire de sauvegarde : **votre** dossier personnel

Cliquer sur OK.

Il suffit maintenant de copier-coller les valeurs du rapport dans un tableau excel.

Générateur de rapport 😑 😑								
**	Options Courbe en cours O Toutes les courbes Associer le graphique Afficher le rapport							
Répertoire H:\CONSTRUCTION	1\PSI_2009_2010\C11\TP\D0SHYDR0\MEC							
Nom du rapport								
Doshydro 16-11-2009 11h 56min 16sec								
	OK Abandon							

C. SIMULATION INFORMATIQUE

1. Tracé de courbes avec Python

Le module **pyplot** de la bibliothèque **matplotlib** permet de tracer rapidement des courbes. Le principe est de placer les valeurs des abscisses et des ordonnées dans 2 listes de même longueur.

Le fichier "*ecart_reel_simule_temporelle.py*", à compléter, permet de superposer deux tracés dans une même figure.

Les deux premières lignes permettent l'importation des deux bibliothèques **numpy** et **matplotlib**:

import numpy as np import matplotlib.pyplot as plt

Il faut créer la liste commune des abscisses et les listes des données des grandeurs que l'on souhaite placer en ordonnée:

t = np.array([])	#	liste	des	valeurs	du	temps	en	secondes
<pre>y1 = np.array([])</pre>	#	liste	des	valeurs	de	y1		
y2 = np.array([])	#	liste	des	valeurs	de	y2		

Pour **superposer les tracés** des données points par points, on utilise les commandes suivantes:

<pre>plt.plot(t,y1,'g-')</pre>	#	tracé	de	la	courbe	e yl	en	vert
<pre>plt.plot(t,y2,'r-')</pre>	#	tracé	de	la	courbe	e y2	en	rouge
plt.show()	#	montre	la	ı fi	igure d	les	trad	cés

On peut légender le graphe à l'aide des commandes suivantes:

titre du graphique
<pre># titre de l'axe des abscisses</pre>
titre de l'axe des ordonnées
mise en place d'une grille

Si l'on souhaite créer **plusieurs figures** de tracé, on peut utiliser les commandes suivantes:

```
fig1 = plt.figure()  # création d'une figure de tracé
fig11 = fig1.add_subplot(1,2,1)  # permet de créer une 1<sup>ère</sup> zone de
tracé dans un graphe
fig11.plot(x,y1)
fig12 = fig1.add_subplot(1,2,2)  # on créé une seconde zone
fig12.plot(x,y2)
plt.show()
```

2. Excel: utiliser un tableur

Un tableur est un logiciel qui permet de travailler une grande quantité de nombres, afin d'en faire des traitements ou des représentations.

➤ Lancement du tableur

Le tableur se lance en double cliquant sur l'icône de raccourci créé sur le bureau de Windows, ou par l'intermédiaire du "menu démarrer" de Windows.

Microsoft	Ixcel - Classeur1													
E Boher Edi	tion Affichage Inse	rtion Format	Qublis Données	Fegètre 2 A	kdobe PQ#									8 >
	🗃 🖪 💞 X 🖻	h 🖪 🛷 🕨	0 + Ci + 🔍	Σ 🗊 6	호나 국나 (A) 4	3 100% · (2 . Arid		10 - G .	ISEE	:=⊞ €	14 43 E	· ۵ · Δ	
-														
A1	-													
A	B	С	D	E	F	G	н		J	К	L	м	N	-
1														
2														
3														
4														
5														
7														
8														
9														
10														
11														
12														
13														
14														
16														
17														
18														
19														
20														
21														
22														
23														
26														
26														
27														
28														
29														
30														
31														
32														- 6
33														-15
I I P H Fe	ull1 / Foul2 / Fo.	10/						1					1993	M
Dentin + D	Ermet automa	times > >		4 8 4			a .							
		oders . / .		- (a) -										
ret												NUM		

Tracé graphique des résultats

Surligner à la souris la plage de données qui est intéressante.

	Α	В	
1			
2	Х	Y (X)	
3	0	3	
4	1	4	
5	2,2	3	
6	4	6,1	
7	5,7	4,5	
8	10	3	
9			
10			

Choisir le menu "Insertion/Graphique".

Sélectionner le type de graphique souhaité Assistant Graphique - Étape 1 sur 4 - Type de Graphique ? 🗙

> Ecriture des données

Les données s'entrent dans les cases, de manière verticale.

or E	1 45	3 **	V De	in roma	1.200	- Louis	a 7	070 4	A000e	10	00%	- 🔊	1 Arte		- 10	-	 	Let 1	 			- 0-	A
				- 44 V				(L) /	2			·					 			- ,00 -			-
B9																							
	A	E	1	С		D		E		F	G		н	1		J		ĸ	L		М	1	4
	0	1(4)	3																				
	1		4																				
	2,2		3																				
	6.7		6,1																				
	10		3																				
	Feuilt	/Fect	2 / Feul	37										11									

Ins	ertion	Format	Outils	Données
	⊆ellule	es		
	Lignes	;		
	Coloni	nes		
	Feuille	•		
· 🛍	<u>G</u> raph	ique		
-				
	Saut o	le page		
f*	Eoncti	ion		
	Nom			•
咨	Comm	ient <u>a</u> ire		
-	Impage			
	Inage	;		,
	Objet			
1 🙆	Lien h	ypertexte	э (trl+K

Cliquer sur "Terminer".

Redimensionner au besoin le graphique avec les poignées de sélection.

III. NOTIONS DE COURS

A. CHAINES FONCTIONNELLES - STRUCTURE

- **B.** Les detecteurs et les Capteurs
- C. LES ACTIONNEURS
- **D.** Systemes Lineaires:
- E. MECANIQUE: