Sciences de l'Ingénieur

DOSSIER RESSOURCE

Avertissement : Les mesures sur le chariot filoguidé sont effectuées le chariot étant immobilisé sur ses cales rétractables (voir sous le châssis).

PRISE EN MAIN DU CHARIOT DANS LE LABORATOIRE	2
ESSAI DE L'ASSERVISSEMENT DE POSITION EN BOUCLE FERMEE	4
ESSAI DE L'ASSERVISSEMENT DE POSITION EN BOUCLE OUVERTE	3
UTILISATION DE MATLAB-SIMULINK	4
TRACÉ DE COURBES AVEC PYTHON	12

Conventions dans ce document

- Indique une action à faire avec la souris ;
- Indique qu'une entrée au clavier est attendue ;
- *Indique qu'une action doit être exécutée sur le système.*

Sciences de l'Ingénieur

DOSSIER RESSOURCE

PRISE EN MAIN DU CHARIOT DANS LE LABORATOIRE

Mise sous tension des appareils

[®] En respectant l'ordre établi ci-après :

- 1. L'ordinateur connecté au robot
- 2. L'alimentation stabilisée 12Vcc du chariot
- Démarrer l'exécution de l'application « M-fil » sur l'ordinateur.
- Valider « Continuer »

Remarque : Une fois l'alimentation stabilisée mise sous tension, vous n'avez que quelques secondes pour lancer l'exécution du logiciel. Passé ce (cours) délai, la carte mère du chariot s'éteint ! Il faut alors relancer toute la procédure.

Conditionnement de l'acquisition

- Étudier / Nombre de blocs à acquérir
- Étudier / Durée de l'acquisition (> 1 s)

ESSAI DE L'ASSERVISSEMENT DE POSITION EN BOUCLE OUVERTE

Réalisation de l'essai

Étudier / Déplacement / Boucle ouverte

- 📾 Régler le nombre d'incrément (grandeur de commande) fourni à l'entrée du CNA.
- 📾 Limiter le déplacement du chariot à 99 mm.
- E Choisir les mesures à afficher (commande, position x et vitesse x').
- RAZ (du HTCL et de la position)
- Start

Tracés des relevés expérimentaux

- Cliquer sur l'icône montrant une courbe sur la gauche de l'écran pour afficher les relevés expérimentaux.
 - \leq L'icône « x » permet d'effectuer une dilatation de l'échelle des abscisses.

Sauvegarde des résultats

Sauvegarde de l'écran

L'écran sélectionné peut être copié sous forme d'image dans le presse-papier de MS Windows : ា Alt + Impr écran

ESSAI DE L'ASSERVISSEMENT DE POSITION EN BOUCLE FERMEE

Réalisation de l'essai

Etudier / Déplacement / Commande en position

- $finise mathematical consigne C_d.$
- Expression Régler le correcteur proportionnel K_p (régler le pôle et le zéro ... à 0 !).
- 📾 Limiter le déplacement du chariot à 99 mm.
- En Choisir les mesures à afficher (commande, position x et vitesse x').
- RAZ (du HTCL et de la position)
- Start

Tracés des relevés expérimentaux

Cliquer sur l'icône montrant une courbe sur la gauche de l'écran pour afficher les relevés expérimentaux.

 $\stackrel{<}{=}$ L'icône « x » permet d'effectuer une dilatation de l'échelle des abscisses.

Sauvegarde des résultats

Sauvegarde de l'écran

ESSAI DE L'AXE ORIENTATION DE LA ROUE SOUS ECHELON

Réalisation de l'essai

Étudier / Orientation / Réponse à un échelon

- 📾 Choisir l'amplitude de la consigne.
- $\stackrel{\scriptstyle{\leftarrow}}{=}$ Choisir les mesures à afficher (commande C₀ et mesure M₀).
- RAZ (du HTCL et de la position)
- Start

Tracés des relevés expérimentaux

- Raz de la consigne de direction + Raz du HCTL + Raz de la position Yalider <u>Annuler</u>
- Cliquer sur l'icône montrant une courbe sur la gauche de l'écran pour afficher les relevés expérimentaux.

 $\stackrel{<}{=}$ L'icône « x » permet d'effectuer une dilatation de l'échelle des abscisses.

Sauvegarde des résultats

Sauvegarde de l'écran

ESSAI DE L'AXE ORIENTATION EN REGIME SINUSOIDAL ETABLI

Réalisation de l'essai

Étudier / Orientation / Étude harmonique

- Régler le générateur sinusoïdal
 - 📾 Choisir l'amplitude de la consigne.
 - En Choisir la fréquence de la commande.
 - **EXAMPLE** Régler le correcteur proportionnel K_p (Zm = 1 et Kpo = 20).
 - $\stackrel{\scriptstyle{\scriptstyle{\otimes}}}{=}$ Choisir les mesures à afficher (commande C₀ et mesure M₀).

Le cas échéant, il faut ajuster le nombre de blocs de données à utiliser pour stocker les mesures (deux par défaut). En effet, il faudra augmenter la durée d'acquisition pour les essais à basse fréquence). Pour cela :

Éditer/Nombre de blocs à charger (entre 1 et 4)

- RAZ (du HTCL et de la position)
- Start

Raz de la consigne de direction	Raz de la consigne de direction
 Raz du HCTL Raz de la position 	· Raz du HCTL
 Raz de la position 	
	 Raz de la position

Tracés des relevés expérimentaux

Cliquer sur l'icône montrant une courbe sur la gauche de l'écran pour afficher les relevés expérimentaux.

 $\stackrel{<}{=}$ L'icône « x » permet d'effectuer une dilatation de l'échelle des abscisses.

Sauvegarde des résultats

Sauvegarde de l'écran

L'écran sélectionné peut être copié sous forme d'image dans le presse-papier de MS Windows : 🚋 Alt + Impr écran

LA SIMULATION SOUS MATLAB-SIMULINK

Lancement de Simulink :

 Lancer le logiciel MATLAB-SIMULINK en double-cliquant sur l'icône MATLAB du bureau.
 Une fois que MATLAB est ouvert, cliquer sur l'icône « Simulink Library » dans la barre de navigation.

Création d'un modèle sous la forme de schéma-bloc :

3. Dans la fenêtre « Simulink Library Browser », créer un nouveau modèle en cliquant sur « New Model ».

Pour vos modèles, vous utiliserez une bibliothèque de blocs prédéfinie appelée « Bibliothèque de SI » disponible dans la fenêtre « Simulink Library Browser ».

Cette bibliothèque contient les blocs les plus courants que vous allez rencontrer dans les systèmes.

4. **Glisser-déplacer** dans la fenêtre du modèle les blocs que souhaitez utiliser pour votre modèle.

5. **Placer les blocs** dans la fenêtre du modèle et **relier les** directement en cliquant sur la sortie d'un bloc puis l'entrée du second bloc à relier.

6. Affecter les bonnes valeurs numériques en double-cliquant dans chacun des blocs et en modifiant les paramètres.

Plusieurs remarques :

- le bloc Transfert **Fcn** permet définir une fonction de transfert sous la forme d'une fraction rationnelle ;
- le bloc Scope permet de définir une sortie et de l'afficher dans un graphe ;
- le paramètre de Laplace est noté s au lieu de p.

Configurer et lancer une simulation :

Si votre schéma-bloc est bien construit, les entrées, les sorties et tout les blocs étant définis, vous pouvez passer à la simulation de votre qui calculera numériquement toutes les valeurs à afficher dans les Scopes.

7. **Ouvrir la configuration** de la simulation temporelle en allant dans la barre transversale du modèle et en ouvrant le Menu « Simulation » puis « Model Configuration Parameters ».

8. Modifier la durée de la simulation dans la fenêtre « Simulation Time ».

9. Pour **modifier le pas de calcul**, choisir l'option « Fixed-Step » de la fenêtre « Solver options » puis indiquer le pas de calcul dans le champ « Fixed-Step Size (fundamental sample time). Valider par OK.

10. Lancer la simulation en cliquant sur l'icône « Run » de la barre transversale du modèle.

11. **Double-cliquer** dans le scope dont vous voulez visualiser le graphe.

Récupérer les valeurs dans un fichier :

12. **Rajouter le bloc « To Workspace »** dans votre schéma et relier la sortie du système à l'entrée de ce bloc.

13. **Paramétrer** le bloc « To Workspace » en choisissant « Structure with time » dans le champ « Save format ».

14. Relancer la simulation en cliquant sur « Run ».

15. **Basculer** sur la fenêtre MATLAB et **double-cliquer** sur la variable « simout » de la fenêtre « Workspace ».

Cette variable contient 2 variables : « time » et « signals ».

16. **Copier les deux colonnes** de valeurs des variables « simout.time » et « simout.signals.values » dans un fichier texte.

17. Sauvegarder le fichier texte.

Configurer et lancer une simulation fréquentielle :

Le schéma bloc terminé, vous pouvez demander le tracé de diagrammes de Bode de la fonction de transfert entre deux variables.

1. Par un **clic droit** sur la flèche du schéma bloc relative à la variable de sortie, placer un point « Open-loop Input » (accessible par l'option "Linear Analysis Points").

- 2. Par un **clic droit** sur la flèche du schéma bloc relative à la variable d'entrée, placer un point « Open-loop Output » (accessible par l'option "Linear Analysis Points").
- 3. Demander le diagramme de Bode par l'intermédiaire du menu « Analysis/Control design/Linear analysis ».

Chariot filoguidé

Sciences de l'Ingénieur

DOSSIER RESSOURCE

- 4. Choisir dans les options disponibles l'option Bode.
- Le tracé peut être ajusté (échelles, valeurs limites, etc.) à l'aide du menu "Properties" (accessible par un click droit sur la fenêtre graphique) et dans l'onglet "BODE PLOT 1" (grille, légende, propriétés, etc.).

ito Style	options 3130 10	01				Laber		Units Sty	ae Op	tions	
Jnits requency:	auto	•]	Scale:	log scale	•	X-L Auto	imits p-Scale:				
/lagnitude:	dB	•]					Limits:	1e+03	to	1e+05	
hase:	degrees	•				Y-L	imits				
Time:	auto	•]				Aut	o-Scale:				
							Limits:	-50	to	50	(Magnitude)
						-		-182	to	1.8	(Phase)

6. Le tracé peut être sauvegardé en tant qu'image (« Print to figure »).

TRACE DE COURBES AVEC PYTHON

Le module **pyplot** de la bibliothèque **matplotlib** permet de tracer rapidement des courbes. Le principe est de placer les valeurs des abscisses et des ordonnées dans 2 listes de même longueur.

Le fichier « *ecart_reel_simule_temporelle.py* », à compléter, permet de superposer deux tracés dans une même figure.

Les deux premières lignes permettent l'importation des deux bibliothèques numpy et matplotlib :

import numpy as np
import matplotlib.pyplot as plt

Il faut créer la liste commune des abscisses et les listes des données des grandeurs que l'on souhaite placer en ordonnée :

t = np.array([]) # liste des valeurs du temps en secondes y1 = np.array([]) # liste des valeurs de y1 y2 = np.array([]) # liste des valeurs de y2

Pour superposer les tracés des données points par points, on utilise les commandes suivantes :

```
plt.plot(t,y1,'g-')  # tracé de la courbe y1 en vert
plt.plot(t,y2,'r-')  # tracé de la courbe y2 en rouge
plt.show()  # montre la figure des tracés
```

On peut légender le graphe à l'aide des commandes suivantes :

```
plt.title('Titre du graphique')  # titre du graphique
plt.xlabel('en abscisse')  # titre de l'axe des abscisses
plt.ylabel('en ordonnée')  # titre de l'axe des ordonnées
plt.grid(True)  # mise en place d'une grille
```

Si l'on souhaite créer plusieurs figures de tracé, on peut utiliser les commandes suivantes :